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1. Abstract
Numerous adverse effects (e.g., depression) have been reported for combi-

nation antiretroviral therapy (cART) despite its remarkable success on viral
suppression in people with HIV. To improve long-term health outcomes for
people with HIV, there is an urgent need to design personalized optimal cART
with the lowest risk of comorbidity in the emerging field of precision medicine
for HIV. However, the large number of possible drug combinations for cART
makes the estimation of cART effects a high-dimensional combinatorial prob-
lem, imposing challenges in both statistical inference and decision-making.
We develop a two-step Bayesian decision framework for optimizing sequen-
tial cART assignments. Applying the proposed method to a dataset from the
Women’s Interagency HIV Study (WIHS), we demonstrate its clinical utility in
assisting physicians to make effective treatment decisions, serving the purpose
of both viral suppression and comorbidity risk reduction.

2. Two-Step Bayesian Decision Framework
Problem Formulation:

• Data: Dij = {Xi0, ti,Yij , Zij}
• Baseline covariates: Xi0

• Longitudinal health state: Yij

• cART regimen: Zij

• Dynamic: Yi,j+1 = f(Yij , Zi,j+1;ϕ)
• Policy: Zi,j+1 = π(Yij , Zij ;θ)
• Reward: ri(Y new

i )

Yi,j−1 Yij Yi,j+1

Zij Zi,j+1

Goal: Find the optimal personalized cART assignment policy π(·, ·;θ⋆
i ) that

maximizes the expected reward θ⋆
i = arg maxθ Ri(θ), where

Ri(θ) =
∫

E(Y new
i

,Znew
i

)∼p(Y new
i

,Znew
i

|D,ϕ,θ)[ri(Y new
i )]p(ϕ | D)dϕ.

Method:
• First step: use the multivariate Gaussian process (MGP) to model the

joint distribution of individual’s longitudinal health states.
• Second step: conduct the uncertainty-penalized policy optimization [2]

with respect to r̃i(Y new
i ) = ri(Y new

i )−λu(Y new
i ,Znew

i ) in a pessimistic
environment, to mitigate the distribution shift issue.
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Figure 1: Illustration of the proposed two-step Bayesian decision framework for
optimizing sequential cART assignments with proper uncertainty propagation.

3. First Step: Modeling Longitudinal States
Multivariate Gaussian process:

Yim(t) = fim(t) + ϵim,

fi(t) ∼ MGP(µi(t),Ωi(t, t′)), ϵim
i.i.d∼ N (0, σ2

m)

µim(t) = Xi0βm + Vi(t)αim + hm(Zi(t)), Ωi(t, t′) = CM
⊗

Ct(t, t′).

Drug combination effects:

hm(Zi(t)) =
∑D

d=1 κ(Zi(t), zd)γmd∑D

d=1 κ(Zi(t), zd)
+

S∑
s=1

∑D

d=1 κ(Zi(t), zd)Xi0sγ̃mds∑D

d=1 κ(Zi(t), zd)︸ ︷︷ ︸
Instantaneous drug effect

+
N∑

n=1
δmn

∫ t

0
I(An ∈ Zi(t′))e−(t−t′)dt′

︸ ︷︷ ︸
Accumulated drug effect

Subset-tree kernel [1] κ(·, ·) to measure drug similarity:

Figure 2: Tree representations of cART regimens. Common substructures that
induce drug similarities are highlighted by the yellow and blue boxes.

4. Second Step: Optimizing cART Assignments
Decision process for assigning cART:

π(Zi,j+1 | Yij , Zij ;θ) =

p(Z(1)
i,j+1 | Yij , Zij ;θ(1))︸ ︷︷ ︸

First level: hard thresholding

p(Z(2)
i,j+1 | Z

(1)
i,j+1,Yij , Zij ;θ(2))︸ ︷︷ ︸

Second level: multi-class logistic regression

p(Z(3)
i,j+1 | Z

(1)
i,j+1, Z

(2)
i,j+1,Yij , Zij ;θ(3))︸ ︷︷ ︸

Third level: Wallenius’ noncentral hypergeometric distribution
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Figure 3: Illustration of the three-level decision process for selecting cART
regimen conditional on individuals’ preceding states and treatment histories.

5. Application: WIHS Data Analysis
We applied the proposed two-step Bayesian decision framework to the Women’s
Interagency HIV Study (WIHS) dataset, which is a large prospective, observa-
tional, multicenter study designed to investigate the impact of HIV infection
on multimorbidity in women with HIV in the United States.
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Figure 4: Left panel: observed (visit 1-31) and predicted (visit 32-35) depres-
sion scores for individual I1 (randomly selected from the WIHS dataset). The
shaded area represents the 95% predictive credible band and the dashed red line
represents the depression threshold. Right panel: personalized optimal sequential
cART assignments for individual I1.

Interpretation of uncertainty penalization:
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Figure 5: Left panel: observed eGFR (kidney function indicator) for individual
I2. Right panel: predicted eGFR under I2’s personalized optimal cARTs with
respect to λ = 0, 0.05, 0.1. The dashed red lines represent the eGFR threshold.

The drug combination 3TC+ABC (λ = 0.05, 0.1) is sold as one pill (brand
name Epzicom), making it more commonly prescribed than FTC+ABC (λ = 0)
in clinical practice due to better adherence. Therefore, there is a trade-off be-
tween exploring regimens that are rarely or never used in the data with higher
expected rewards and selecting commonly-prescribed regimens with lower risks.
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